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This unit has two topics

Path Integrals

Non-Relativistic QM

Feynman Diagrams
Fully Relativistic QED



Path Integral Formulation

Sum over Histories Formulation
Lagrangian Formulation
Amplitude Formulation

Feynman (1941; age 23)

The probability to go from a to b is the square
of an amplitude

The amplitude is the weighted sum over all
possible ways to go to b from a

S is the classical action



Feynman Path Integrals

Non-Relativistic

Two formulations of classical mechanics

Hamiltonian formulation
H = KE + PE
=> Schrodinger equation formulation of QM

Lagrangian formulation
L = KE - PE
=> Path integral formulation of QM

Operators in a Hilbert Space
versus
No Operators No Hilbert Space
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A New Approach to
Quantum Theory
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“The young Feynman revealed here was full of invention, verve, and ambition.
His new approach to quantum mechanics, after simmering for decades
beneath the surface of theoretical physics, burst into new prominence in the
1970s. Now its influence is pervasive, and still expanding. Feynman's original
presentation is not only uniquely clear, but also contains insights and
perspectives that are not widely known, and might well provide ammunition
for another explosion or two.”

Frank Wilczek

2004 Physics Nobel Laureate

“Historians and physicists alike will enjoy this easy-to-read little book ... The
thesis itself is a masterpiece of clear exposition ... it is written in Feynman's
uniquely chatty style, and reminiscent of the famous Feynman lectures. It is
a delight to read and is likely to offer an insight, even to non-physicists, into
both physics and the workings of Feynman's mind. | would not hesitate to
recommend the book to anyone—working physicists, historians,philosophers
and even ‘curious fellows’ who would like to 'peak over the shoulder' of one of
the 20th century's great physicists at work.”

CERN Courier

“The path integral approach is now something that every graduate student in
theoretical physics is supposed to know ... the thesis provides a very good
background for the way these ideas came about. The two companion articles,
although available in print, also gives a complete picture of the development
of this line of thinking. The helpful introductory remarks by the editor also
puts things in the proper historical perspective. This book would be very
helpful to anyone interested in the development of modern ideas in physics.”
Classical and Quantum Gravity

“R Feynman was an excellent writer and it is a joy to read his dissertation ...

The reprints in this booklet are historical cornerstones in the development of

modern theoretical physics, very interesting and still very well readable.”
Zentralblatt MATH
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Space-Time Approach to Non-Relativistic
- Quantum Mechanics

R. P. FEYNMAN

Cornell University, Ithaca, New York

Non-relativistic quantum mechanics is formulated here in a different way. It is, however,
mathematically equivalent to the familiar formulation. In quantum mechanics the probability
of an event which can happen in several different ways is the absolute square of a sum of
complex contributions, one from each alternative way. The probability that a particle will be
found to have a path x(¢) lying somewhere within a region of space time is the square of a sum
of contributions, one from each path in the region. The contribution from a single path is
postulated to be an exponential whose (imaginary) phase is the classical action (in units of %)
for the path in question. The total contribution from all paths reaching x, £ from the past is the
wave function ¢ (x, ¢). This is shown to satisfy Schroedinger’s equation. The relation to matrix
and operator algebra is discussed. Applications are indicated, in particular to eliminate the
coordinates of the field oscillators from the equations of quantum electrodynamics.

1. INTRODUCTION

T is a curious historical fact that modern
quantum mechanics began with two quite

different mathematical formulations: the differ-
ential equation of Schroedinger, and the matrix
algebra of Heisenberg. The two, apparently dis-
similar approaches, were proved to be mathe-
" matically equivalent. These two points of view
were, destined to complement one another and
to be ultimately synthesized in Dirac’s trans-
formation theory. _

This paper will describe what is essentially a
third formulation of non-relativistic quantum
theory. This formulation was suggested by some
of Dirac’s®? remarks concerning the relation of

1P. A. M. Dirac, The Principles of Quantum Mechanics
(The Clarendon Press, Oxford, 1935), second edition,
Secnon 33; also, Physik. Zeits. Sow_]etumons 64 (1933).
2P, A. M. Dirac, Rev. Mod. Phys. 17, 195 (1945).

classical action?® to quantum mechanics. A proba-
bility amplitude is associated with an entire
motion of a particle as a function of time, rather
than simply with a position of the particle at a
particular time.

The formulation is mathematically equivalent
to the more usual formulations. There are,
therefore, no fundamentally new results. How-
ever, there is a pleasure in recognizing old things
from a new point of view. Also, there are prob-
lems for which the new point of view offers a
distinct advantage. For example, if two systems
A and B interact, the coordinates of one of the
systems, say B, may be eliminated from the
equations describing the motion of 4. The inter-

3 Throughout this paper the term “action” will be used
for the time integral of the Lagrangian along a path.
When this path is the one actually taken by a particle,
moving classwally, the integral should more properly be
called Hamilton’s first principle function.
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Chapter 1.2

Path Integral Formulation
of Quantum Physics

The professor’s nightmare: a wise guy in the class

As I noted in the preface, I know perfectly well that you are eager to dive into
quantum field theory, but first we have to review the path integral formalism
of quantum mechanics. This formalism is not universally taught in introductory
courses on quantum mechanics, but even if you have been exposed to it, this chapter
will serve as a useful review. The reason I start with the path integral formalism
is that it offers a particularly convenient way of going from quantum mechanics
to quantum field theory. I will first give a heuristic discussion, to be followed by a
more formal mathematical treatment.

Perhaps the best way to introduce the path integral formalism is by telling a
story, certainly apocryphal as many physics stories are. Long ago, in a quantum
mechanics class, the professor droned on and on about the double-slit experiment,
giving the standard treatment. A particle emitted from a source S (Fig.1.2.1) attime
t = 0 passes through one or the other of two holes, A; and A,, drilled in a screen
andis detected at time ¢ = T by adetector located at O. The amplitude for detection
is given by a fundamental postulate of quantum mechanics, the superposition
principle, as the sum of the amplitude for the particle to propagate from the source
S through the hole A; and then onward to the point O and the amplitude for the
particle to propagate from the source S through the hole A, and then onward to
the point O.

Suddenly, a very bright student, let us call him Feynman, asked, “Professor,
what if we drill a third hole in the screen?” The professor replied, “Clearly, the
amplitude for the particle to be detected at the point O is now given by the sum
of three amplitudes, the amplitude for the particle to propagate from the source S
through the hole A and then onward to the point O, the amplitude for the particle
to propagate from the source S through the hole A, and then onward to the point
O, and the amplitude for the particle to propagate from the source S through the
hole A; and then onward to the point O.”

The professor was just about ready to continue when Feynman interjected again,
“What if I drill a fourth and a fifth hole in the screen?”” Now the professor is visibly

7



8 1. Motivation and Foundation
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losing his patience: “All right, wise guy, I think it is obvious to the whole class that
we just sum over all the holes.”

To make what the professor said precise, denote the amplitude for the particle
to propagate from the source S through the hole A; and then onward to the point
O as A(S — A; — 0O). Then the amplitude for the particle to be detected at the
point O is

A(detected at 0)= Y~ A(S — A; — O) (1)

1

But Feynman persisted, “What if we now add another screen (Fig. 1.2.2) with
some holes drilled in it?” The professor was really losing his patience: “Look, can’t
you see that you just take the amplitude to go from the source S to the hole A; in
the first screen, then to the hole B I in the second screen, then to the detector at O,
and then sum over all i and j?”

Feynman continued to pester, “What if I put in a third screen, a fourth screen,
eh? What if I put in a screen and drill an infinite number of holes in it so that the
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screen is no longer there?” The professor sighed, “Let’s move on; there is a lot of
material to cover in this course.”

But dear reader, surely you see what that wise guy Feynman was driving at.
I especially enjoy his observation that if you put in a screen and drill an infinite
number of holes in it, then that screen is not really there. Very Zen! What Feynman
showed is that even if there were just empty space between the source and the
detector, the amplitude for the particle to propagate from the source to the detector
is the sum of the amplitudes for the particle to go through each one of the holes
in each one of the (nonexistent) screens. In other words, we have to sum over the
amplitude for the particle to propagate from the source to the detector following
all possible paths between the source and the detector (Fig. 1.2.3).

A (particle to go from S to O intime T') =

Z A (particle to go from S to O in time T following a particular path) 2)
(paths)

Now the mathematically rigorous will surely get anxious over how ) is
to be defined. Feynman followed Newton and Leibniz: Take a path (Fig. 1.2.4),
approximate it by straight line segments, and let the segments go to zero. You can
see that this is just like filling up a space with screens spaced infinitesimally close
to each other, with an infinite number of holes drilled in each screen.

Figure 1.2.4



10 1. Motivation and Foundation

Fine, but how to construct the amplitude A (particle to go from S to O intime T
following a particular path)? Well, we can use the unitarity of quantum mechanics:
If we know the amplitude for each infinitesimal segment, then we just multiply
them together to get the amplitude of the whole path.

In quantum mechanics, the amplitude to propagate from a point g, to a point g
in time 7 is governed by the unitary operator e ~*#/7, where H is the Hamiltonian.
More precisely, denoting by |g) the state in which the particle is at ¢, the amplitude
in question is just (gp|e T |q;). Here we are using the Dirac bra and ket
notation. Of course, philosophically, you can argue that to say the amplitude is
(qrle HT |q;) amounts to a postulate and a definition of H. It is then up to
experimentalists to discover that H is hermitean, has the form of the classical
Hamiltonian, et cetera.

Indeed, the whole path integral formalism could be written down mathemat-
ically starting with the quantity (gz|e~#T |q,), without any of Feynman’s jive
about screens with an infinite number of holes. Many physicists would prefer a
mathematical treatment without the talk. As a matter of fact, the path integral for-
malism was invented by Dirac precisely in this way, long before Feynman.

A necessary word about notation even though it interrupts the narrative flow: We
denote the coordinates transverse to the axis connecting the source to the detector
by g, rather than x, for a reason which will emerge in a later chapter. For notational
simplicity, we will think of ¢ as 1-dimensional and suppress the coordinate along
the axis connecting the source to the detector.

Dirac’s formulation

Let us divide the time 7" into N segments each lasting 6t = T/N. Then we write

—iHT —1H8te—tH8t . .e—tHcSt

(qrle lgr) = (qrle lgr)

Now use the fact that |¢g) forms a complete set of states so that f dqglg){ql = 1.
Insert 1 between all these factors of e #% and write

—iHTl

(grle qr)

N—1
= ([T [ daptarte™ an_ian-i1e ™ lay ) -
j=1

—iHét

< qole lg1) (g1l e % |q;) 3)

Focus on an individual factor (g;,|e"#% |g;). Let us take the baby step
of first evaluating it just for the free-particle case in which H = p?/2m. The
hat on p reminds us that it is an operator. Denote by |p) the eigenstate of p,
namely p |p) = p |p). Do you remember from your course in quantum mechanics
that (g|p) = ¢/P4? Sure you do. This just says that the momentum eigenstate is
a plane wave in the coordinate representation. (The normalization is such that
J(dp/27)|p){p| = 1.) So again inserting a complete set of states, we write



Path integral gives us insight into
the extremely nonlocal nature of
quantum mechanics.

So, why not teach the path integral method
from the very beginning?

Path integral is much more difficult than
Schrodinger equation for simple NRQM
problems, viz., hydrogen atom and spin.

On the other hand, easier or comparable to the
canonical method for relativistic problems.



Preface

These are lecture notes of a course on path integrals I gave at the Freie
Universitat Berlin during the winter 1989/1990.. My mterest in tlns sub-
Ject. dates back to 1972 when the late R.P. Feynman drew my attention
to the unsolved pa.th mtegral of the hydrogen atom. [ was spendmg my
sabbatical year at Caltech and Feynman confessed to me his embarrass-
ment that he could not solve the path 1ntegra1 of this most fundamental
quantum system. This made him quit teachmg the entire subJect in: hxs
course on quantum mechanics as he had initially done e In a d!scussxon he
said to me: “Kleinert, you figured out all that group theory stuff of the
hydrogen atom, why don’t you solve the path mtegral"’ He was referrlng to
my 1967 Ph.D. thesxs where I had demonstrated that all dynamlcal ques-
tions of the hydrogen atom could be answered t usmg only operations within
the dynamical group O(4,2). Indeed, in that work the four-dlmensxonal
oscillator played a crucial role and the rmssmg steps to the solution of the
‘path integral were later found to be very few. After returning back ‘home to
Berlin I forgot all about the problem since I was busy using path integrals
in another context, developing a direct field theoretic passage from quark
theories to a collective field theory of hadrons.® Later I was applying this
theory to condensed matter (superconductors, superfluid *He) and nuclear
physics, where I introduced path integral techniques to set up a field theory
of collective phenomena.*

. 'Quoting from the preface of the textbook R.P. Feynman and A.R. Hibbs, Quantum
Mechanics and Path Integrals, McGraw Hill, New York 1965: “By the same time, Dr.
Feynman's approach to teaching the subject of quantum mechanics evolved somewhat
away from the initial path integral approach.”

2H. Kleinert, Fortschr. Phys. 6, 1, (1968), and Group Dynamics of the Hydrogen
Atom, Lectures presented at the 1967 Boulder Summer School, published in Lectures in
Theoretical Physics, Gordon and Breach, N. Y., 1968, Vol X B, ed. by A.O. Barut and
W.E. Brittin.

3See my 1976 Erice lectures, Hadronization of Quark Theories, published in Under-
standing the Fundamental Constituents of Matter, Plenum press, New York, 1978, ed. by
A. Zichichi.

4H. Kleinert, Phys. Lett. B 69, 9 (1977); Fortschr. Phys. 26, 565 (1978); 30, 187, 351
(1982).
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viii k Preface

The hydrogen problem came up agam in 1978 when [ had ‘to teach a
course on quantum mechanics. At that time it had become customary to
give in such a course at least a brief mtroductlon into path mtegrals and to
explain. the concept of quantum ﬂuctuatxons ‘At the same time, L.H. Duru
Jomed my group as a postdoc from Turkey on'a Humboldt fellowshxp ‘Since
he was familiar with the quantum mechanics of the hydrogen atom I'sug-

gested to him the collaboration on the path integral. He quickly acquired:
the basic techniques and very soon we found the most important ingredient

of the solution:® The transformation of time in the path integral to a new

‘path dependent pseudot:me, combined thh a transformation of the coordi-

_nates to “square-root coordmates”, to be eXplamed in: Cha.pters 13 and 14,
Unfortunately, we were able to perform these transformations only in a very
formal way which led to the correct result, as we now know, due to good for-
tune. Our procedure was soon criticized® because of the sloppy treatment
of the time slicing. A proper treatment could, in principle, have rendered
unwanted corrections which we had simply ignored. Some authors went
through a detailed time-slicing procedure,” but the correct result emerged
only by transforming the measure of path integration inconsistently. In fact,
when I calculated the corrections according to the standard rules I found
them to be zero only in D = 2 dimensions.® The same treatment in D = 3
dimensions gave non-zero corrections which spoiled the beautiful result and
left me puzzled. Only very recently I happened to locate the place where
the D = 3 treatment failed: It was the transformation of the time-sliced
measure in the path integral from the original cartesian to the auxiliary
“square-root coordinates” in which the system becomes harmonic and in-
tegrable. In contrast to D = 2, the D = 3 transformation is non-holonomic
and introduces not only curvature but also torsion. This suggested that the
transformations of the time-sliced measure had a hitherto unknown depen-
dence on torsion. Thus it was essential to find first the correct path integral
for a particle moving in a space with curvature and torsion. This was a
non-trivial task since already in a space with curvature only, the literature
was ambiguous giving several prescriptions to choose from which differed
by multiples of the curvature scalar added to the energy.® The ambigu-

SL.H. Duru and H. Kleinert, Phys. Lett. B 8, 30 (1979), Fortschr. Physik 30, 401
(1982).

5G.A. Ringwood and J.T. Devreese, J. Math. Phys. 21, 1390 (1980).

"R. Ho and A. Inomata, Phys. Rev. Lett. 4§, 231 (1982), A. Inomata, Phys. Lett. A
87, 387 (1981).

8H. Kleinert, Phys. Lett. B 189, 187 (1987); contains also a criticism of Ref. 7.

B.S. DeWitt, Rev. Mod. Phys. 29, 337 (1957), K.S. Cheng, J. Math. Phys. 19, 1723
(1972), H. Kamo and T. Kawai, Prog. Theor. Phys. 50, 680, (1973), T. Kawai, Found.

Phys. 5, 143 (1975), H. Dekker, Physica 1094, 586 (1980), G.M. Gavazzi, Nuovo Cimento

A 101, 241 (1981), M.S. Marinov, Physics Reports 60, 1 (1980).

Preface ‘ ix

ities are path integral analogs of the so-called operator ordering problem
in quantum mechanics. When trying to apply any of the existing prescrip-
tions to spaces with torsion, I always ran into disaster finding non-covariant
answers. So, something had to be wrong with all of them. Guided by the
idea that in spaces with constant curvature the path integral should give the
same result as the operator quantum mechanics based on the commutation
rules of the generators of angular momentum I was eventually able to find a
consistent quantum equivalence principle for path integrals,’® thus giving a
unique answer also to the operator ordering problem. This finally enabled
me to solve the leftover problem of the D = 3 Coulomb path integral, the
absence of the finite time-slicing corrections. The detailed demonstration
will be presented in Chapter 13 of this book. In Chapter 14, I treat a
variety of one-dimensional systems which have become soluble by the new
techniques.

Special emphasis will be given, in Chapter 8, to instability (path col-
lapse) problems of Feynman’'s time sliced path integral in the presence
of singular potentials. A general stabilization procedure is presented in
Chapter 12 which has to be applied whenever centrifugal barriers, angular
barriers, or Coulomb potentials are present.!!

Another project which Feynman suggested to me, the improvement of
a variational approach to path integrals given in his book Statistical Me-
chanics (Benjamin, Reading, 1972; Section 3.5), found a faster solution.
We started work during my sabbatical stay at the University of California
at Santa Barbara in 1982 when Feynman came on a visit. After a few
meetings and discussions the problem was solved and the preprint drafted.
Then, unfortunately, Feynman’s illness prevented him from reading the fi-
nal proof of the paper. He was able to do this only three years later when
I came for another sabbatical leave to the University of California at San
Diego and the paper could finally be submitted.?

Due to the recent interest in lattice theories I have found it useful to
present the solutions to the harmonic path integrals all at the level of finite
time slices, without going immediately to the continuum limit as done in
other texts. This should help to understand some typical lattice effects seen
in Monte Carlo simulations of various systems.

The path integral description of polymers is introduced in Chapter 15
where stiffness as well as the famous excluded-volume problem are discussed
and parallels are drawn to path integrals of relativistic particle orbits. This
chapter may be a good preparation to presently ongoing research in the

19H. Kleinert, Mod. Phys. Lett. A 4, 2320 (1989), Phys. Lett B 296, 315 (1990).
114, Kleinert, Phys. Lett. B 224, 313 (1989).
12R.P. Feynman and H. Kleinert, Phys. Rev. 4 34, 5080, (1986).
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A path integral for spinning particles is developed. It is a one-particle theory, equivalent to the usual
quantum mechanics. Qur method employs a classical model for spin which is quantized by path integration.
The model, the spherical top, is a natural one from a group-theoretic point of view and has been used before
in a similar context. The curvature and multiple connectedness of the top coordinate space [ SO(3)] provide
some interesting features in the sum over paths. The Green’s function which results from this procedure
propagates all spins, and recovery of the usual Pauli spinors from this formalism is achieved by projection

to a specific spin subspace.

1. INTRODUCTION
"ECENTLY, Feynman who mvented the sub]ect,
had thls to say about path mtegrals1 ’

e path mtegrals suffer most grleveusly from a

~ gerious defect. They do not permit a dxscussmn of )

“spin operators . . . in-a simple and lucid way. . .
Nevertheless, spin is a simple and vital part of real

“quantum mechanical systems. It is a serious Ermta-
tion that the half-integral spin of ‘the electron does
1ot find a snnple and ready representatton,

This representation, for the nonrelatmstlc case, is
our present concern. The formulation is in terms of a
classical model for spin which is familiar and non-
controversial, and our efforts will be directed at path
integration of this model.

To our knowledge, existing path-integral theories for
spin? concentrate on the statistical aspects of the
problem and as such are most naturally expressed as
field theories. The spin properties of the fermions or
bosons of these theories are somewhat secondary and
not especially transparent. It would appear that non-
relativistically spin and statistics are separate questions
and that a simple spin theory should concentrate on
just that, leaving the complications of several particles
to other considerations. Our goal is then a one-particle
theory with optional second quantization.

The idea behind our approach is simple. In principle,
there is no difficulty in using path integrals to get the
spin of a polyatomic molecule composed of spinless
atoms. By a change of variables it is possible to describe
this path integral as being over translational, rotational;
and internal coordinates. The second of these gives rise
to total spin. To get the simplest spinning object we
throw away the extra internal coordinates and append
to translational coordinates only rotational variables.
This will also give half-integral spin since, as is well
known, the “‘ideal” top, as opposed to a bound state of
several particles, possesses all spins (j=0, 3, 1, ---).

* Work supported in part by the National Science Foundation
and the Army Research Office, Durham.

1R. P. Feynman and A. R. Hibbs, Quanium Mechanics and
Path Integrals (McGraw-Hill Book Co., New York, 1965), p. 355.

?See J. R. Klauder, Ann. Phys. (N Y.) 11, 123 (1960 and
references quoted therein,
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The word “top” is used here because this is the
archetype of a mechanical object described by rotational
coordinates. Thus the position of a top is determined by
a rotation (e.g., that which brings it from some fiducial
position), which is to say that its position is given by
an element of the group SO(3).

In fact, the relation between half-integral spins and
the rotation group is particularly direct in the context
of path-integral theory.® Ray representations of SO(3)
arise because its fundamental group is not trivial—
i.e., there are paths in the group which are not deform-
able into one another. The connection between homo-
topy theory and representation theory is made via
possibly multivalued functions defined on the group
manifold. In path integral theory we work directly
with the paths. Distinct homotopy classes of paths
enter the sum over paths with arbitrary relative phase
factors. The selection of these phase factors gives rise
to the various multivalued representations. Between
given endpoints in SO(3) there are two classes of paths.
Depending on the relative sign with which these are
added one obtains the propagator for a top of integral
or half-integral spin. Incidentally with this viewpoint
the distinction between an ideal top and an #-body
bound state is evident. As long as the latter can in
principle come apart its total coordinate space is R®";
which is simply connected (and therefore only integral
spins are allowed).

Another approach to spin theory can be obtained
through the use of a Hamiltonian, and Bacry* presents
a classical phase space and in fact uses fewer coordinates
for his spinning particle than we shall. Nevertheless, our
desire is to extend Feynman’s theory in its most
pristine form: a classical system with Lagrangian and
variational principle. Furthermore, it is not clear that
path integral computations in phase space are feasible
for any but the most trivial coordinate systems.

Recovery of the usual Pauli spinor formalism from
the top theory described above is easily accomplished
by projection to a fixed angular momentum subspace.
Similarly the behavior of this top in the presence of an

3 M. Hamermesh, Group Theory (Addxson-Wesley Publishing
Co., Inc., Reading, Mass 1962), pp. 3

‘H Ba.cry, Argonne Natxonal Labora.tory report, 1966 (un<
published) ; also H, Bacry, Commun. Math, Phys. 5, 97 (1967).
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Preface

This book originated in a course given at the Technion some 10 years ago:
during my first stay, as a visitor, in Israel. Things were different then. Path
integrals were not in the mainstream of anything, and I think those who
studied this topic did so more from an aesthetic turn of mind than for
practical reasons. Either that, or they still carried forth the ideas of the
1950s when path integration had its great, early successes. My own interest
in the subject is accidental—while reading an article in Schwinger’s reprint
collection on quantum electrodynamics the pages slipped and the book fell
open to Feynman’s Reviews of Modern Physics paper. This I read, and
resolved, as a thesis topic, to try to produce a path integral for spin.

Path integration has come a long way in the 1970s. In statistical
physics it was the basic framework for the first formulation of the renor-
malization group transformation. It is used extensively in studying systems
with random impurities. In particle physics it is basic to the instanton
industry and finds application in studies of gauge field theory (even though
some of the methods used had been developed for other problems in the
1960s). In chemical, atomic, and nuclear physics path integrals have been
applied to semiclassical approximation schemes for scattering theory. And
in rigorous studies of quantum field theory and statistical mechanics the
functional integral is used again and again.

This is a book of techniques and applications. My aim is to say what
the path integral is and then by example to show how it can and has been
used. The approach is that of a physicist with a weakness for but not an
addiction to mathematics. The level is such that anyone with a reasonable
first course in quantum mechanics should not find difficulty although
some of the applications presuppose specialized knowledge; even then, on
topics of special interest to me I have supplied background material
unrelated to path integrals.

The implications of path integrals for a general understanding of
quantum mechanics have been beautifully expounded in Feynman’s origi-

vii



vili PREFACE

nal Reviews of Modern Physics paper and in his book on path integrals with
Hibbs. For this reason 1 have touched only lightly on these matters. The
Feynman-Hibbs book also includes many applications of path integration,
some of which have been given brief treatment here. The emphasis in that
volume is on applications developed by Feynman himself, and while they
form a considerable body of knowledge there is still enough left over for
the present book.

The first part of the book develops the techniques of path integration.
Our basic derivation of the path integral presents it as a mathematically
justified consequence of the usual quantum mechanics formalism (via the
Trotter product formula). Of course we also talk of summing the quantity
exp(iS/h) over all paths, despite the lack of rigorous justification for such
terminology. In fact some of our work makes extensive use of this view.

Nevertheless, while I have been willing to work without the full blessings:

of theorems at every step, I have tried to avoid some of the pitfalls that
path integrals offer to the unwary. In particular there is a good deal of
discussion of the relation (Adistance)*~(Atime), a central property of
paths entering the Feynman sum over histories. Some of the usual quan-
tum formalism is recovered from the path integral but no great emphasis 18
placed on this goal. The explicitly solvable path integrals— the harmonic
oscillator and variations thereof—are written out, and it is thus shown that
the awesome task of summing over paths can in fact occasionally be done.
At this early stage we also introduce the Wiener integral, formal first
cousin of the path integral and legitimate integral over paths. Here we are
able to indulge in an occasional rigorous proof and present a calculation of
a first passage time, illustrating the profound connection provided by the
Wiener integral between probability and potential theory.

The choice of applications that appear in this book requires a special
apology. For a topic to be treated here, I had to first know about it, next
understand it (or think I did), then find it amusing, exciting, fundamental,
or possessing some similar quality, and finally have the time to present it.
There are undoubtedly works that satisfy the third of my criteria but miss
out on some other count. Section 32, being a brief treatment of some
omissions, reflects the fact that the book had to be finished some time
although many beautiful applications would not appear.

As to the applications that do appear.... A lot of space is devoted to
the semiclassical approximation. Although the mathematical justification
for the stationary phase approximation to the functional integral is not
strong, this is an important application, at least in terms of consumer
interest. Also, one of the features of Feynman’s formulation of quantum
mechanics that first impressed me was that the correspondence limit
(#i—0) was a wave of the hand away (via the stationary phase approxima-
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tion). Of course converting the hand waving arguments to mathematics is
still an uncompleted job, but that does not detract from the beauty of the
ideas. I must also confess that I am drawn to the semiclassical approxima-
tion not so much by consumer interest but rather by the way in which so
many different strands of nineteenth and twentieth century mathematics
are brought together. Between Sections 11 and 18 the following topics—all
relevant to the matter at hand—are taken up: (1) variational principles of
classical mechanics and minimum (rather than merely extremum) proper-
ties of paths—the Jacobi equatiorf; (2) the Morse index theorem; (3)
asymptotic analysis, order relations, and so on; (4) Sturm-Liouville theory;
(5) Thom’s catastrophe theory; (6) uniform asymptotic analysis. ‘

~ Starting from semiclassical results it is not difficult to derive both
approximations for scattering theory (Section 19) and a path integral
theory of optics (Section 20). The optics calls for some unnatural defini-
tions but I think the reward is worth the temporary inelegance: semiclassi-
cal results for path integrals lead at once to geometrical (and even
physical) optics with a possibility of getting Keller’s “geometrical diffrac-
tion” theory too (that possibility is suggested but not carried out in this
book).

Probably the most famous early application of path integration is to
the polaron and we treat that here too. What makes the polaron special
from the standpoint of selling path integrals is that it is one of the few
places where the path integral not only helps you discover an answer, but
also remains the best way to calculate the answer even after you know it. 1
like the polaron because it is a tractable field theory; the benefits obtained
from using the path integral are entirely analogous to those gotten in
quantum electrodynamics, but for the latter all steps are more difficult
because of the infinities, the vector character of the field, and gauge
problems. Results of the path integral treatment of Q.E.D. are mentioned
briefly in Section 32. ‘ ; .

Three sections are devoted to the problem of formulating a path
in;egr‘al for spin. Not surprisingly 1 place - the ‘most. emphasis on the
approach I myself have worked on. To be honest, if 1 had to solve the
problem of a hydrogen atom in a magnetic field 1 ‘would not use this
formalism. Nevertheless, ‘the method shows:there is some way to treat spin
by path integrals. It would also appear that some. of the connections to

“homotopy theory developed in the course of working out a path integral
for spin are turning out to be important in gauge theories. Unfortunately,
path integral treatments of gauge theories get only the briefest mention in
this book; this is one of the gaps I especially regret.

The section on relativistic propagators is both central to the book and
an incidental side topic. It is central, because if you wish to think of path



9
Path-Integral Methods

In Chapters 7 and 8 we applied the canonical quantization operator for-
malism to derive the Feynman rules for a variety of theories. In many
cases, such as the scalar field with derivative coupling or the vector field
with zero or non-zero mass, the procedure though straightforward was
rather awkward. The interaction Hamiltonian turned out to contain a
covariant term, equal to the negative of the interaction term in the La-
grangian, plus a non-covariant term, which served to cancel non-covariant
terms in the propagator. In the case of electrodynamics this non-covariant
term (the Coulomb energy) turned out to be not even spatially local,
though it is local in time. Yet the final results are quite simple: the Feyn-
man rules are just those we should obtain with covariant propagators, and
using the negative of the interaction term in the Lagrangian to calculate
vertex contributions. The awkwardness in obtaining these simple results,
which was bad enough for the theories considered in Chapters 7 and 8,
becomes unbearable for more complicated theories, like the non-Abelian
gauge theories to be discussed in Volume II, and also general relativity.
One would very much prefer a method of calculation that goes directly
from the Lagrangian to the Feynman rules in their final, Lorentz-covariant
form.

Fortunately, such a method does exist. It is provided by the path-
integral approach to quantum mechanics. This was first presented in the
context of non-relativistic quantum mechanics in Feynman’s Princeton Ph.
D. thesis,! as a means of working directly with a Lagrangian rather than a
Hamiltonian. In this respect, it was inspired by earlier work of Dirac.? The
path-integral approach played a part (along with inspired guesswork) in
Feynman’s later derivation of his diagrammatic rules.? However, although
Feynman diagrams became widely used in the 1950s, most physicists
(including myself) tended to derive them using the operator methods of
Schwinger and Tomonaga, which were shown by Dyson in 1949 to lead
to the same diagrammatic rules that had been obtained by Feynman by
his own methods.

The path-integral approach was revived in the late 1960s, when Faddeev

376
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and Popov* and De Witt®> showed how to apply it to non-Abelian gauge
theories and general relativity. For most theorists, the turning point
came in 1971, when 't Hooft® used path-integral methods to derive the
Feynman rules for spontaneously broken gauge theories (discussed in
Volume II), including in particular the theory of weak and electromagnetic
interactions, in a gauge that made the high energy behavior of these
theories transparent. Soon after, as also discussed in Volume II, it was
discovered that the path-integral method allows us to take account of
contributions to the S-matrix that have an essential singularity at zero
- coupling constant and therefore cannot be discovered in any finite order
of perturbation theory. Since then, the path-integral methods described
here have become an indispensable part of the equipment of all physicists
who make use of quantum field theory.

At this pomt the reader may be wondering why if the path-integral
method is so convenient we bothered in. Chapter 7 to introduce the
canonical formalism. Indeed, Feynman seems at first to have thought
of his path-integral approach as a substitute for the. ordxnary canonical
formulation of quantum mechamcs ‘There are two reasons for starting
with the canonical formalism. The ﬁrst is a point of principle: although
the path-integral formahsm prov1des us with manifestly Lorentz-invariant
~d1agrammat1c rules, it does not make clear why the S-matrix calculated
in this way is unitary. As far as 1 know, the only way to show that the
path-integral formalism ylelds a umtary S-matrix is to use it to reconstruct
the canonical formahsm, in which umtanty is obvious. There is a kind
of conservation of trouble here; we can use the canonical approach in
‘which unitarity is obvious and Lorentz invariance obscure, or the path-
mtegral approach, which is manifestly Lorentz-invariant but far from
‘mamfestly unitary. Since the path-integral approach is here derived from
the canomcal approach we know that the two approaches yield the same
S-matrix, so that the S-matrix must mdeed be both Lorentz—mvanant and
unitary.
~ The second reason for introducing the canonical formalism first is
more practical: there are important theories in which the simplest ver-
sion of the Feynman path-integral method, in which propagators and
interaction vertices are taken directly from the Lagrangian, is simply
wrong. One example is the non-linear o-model, with Lagrangian density
Y =—3 gk/(qS) cbk@“qb/ In such theories, using the naive Feynman rules
derived dlrectly from the Lagrangian density would yield an S-matrix that
is not only wrong but even non-unitary, and that also depends on the
way in which we define the scalar field.” In this chapter we shall derive
the path-integral formalism from the canonical formalism, and in this way
we will see what additional sorts of vertices are needed to supplement the
simplest version of the Feynman path-integral method.
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I went to a beer party in the Nassau Tavern in Princeton. There was a
gentleman, newly arrived from Europe (Herbert Jehle) who came and sat
next to me. Europeans are much more serious than we are in America
because they think a good place to discuss intellectual matters is a beer
party. So he sat by me and asked, "What are you doing" and so on, and I
said, "I'm drinking beer." Then I realized that he wanted to know what
work I was doing and I told him I was struggling with this problem, and I
simply turned to him and said "Listen, do you know any way of doing
quantum mechanics starting with action--where the action integral comes
into the quantum mechanics?" "No," he said, "but Dirac has a paper in
which the Lagrangian, at least, comes into quantum mechanics. I will show
it to you tomorrow."

Next day we went to the Princeton Library (they have little rooms on the
side to discuss things) and he showed me this paper. Dirac's short paper in
the Physikalische Zeitschrift der Sowjetunion claimed that a mathematical
tool which governs the time development of a quantal system was
"analogous" to the classical Lagrangian.

Professor Jehle showed me this; I read it; he explained it to me, and I said,
"What does he mean, they are analogous; what does that mean,
analogous? What is the use of that?" He said, "You Americans! You
always want to find a use for everything!" I said that I thought that Dirac
must mean that they were equal. "No," he explained, "he doesn't mean
they are equal." "Well," I said, "let's see what happens if we make them
equal."

So, I simply put them equal, taking the simplest example . . . but soon
found that I had to put a constant of proportionality A in, suitably adjusted.
When I substituted . . . and just calculated things out by Taylor-series
expansion, out came the Schrodinger equation. So I turned to Professor
Jehle, not really understanding, and said, "Well you see Professor Dirac
meant that they were proportional." Professor Jehle's eyes were bugging
out -- he had taken out a little notebook and was rapidly copying it down
from the blackboard and said, "No, no, this is an important discovery."

Feynman's thesis advisor, John Archibald Wheeler (age 30), was equally
impressed. He believed that the amplitude formulation of quantum
mechanics--although mathematically equivalent to the matrix and wave
formulations--was so much more natural than the previous formulations
that it had a chance of convincing quantum mechanics's most determined
critic. Wheeler writes:
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action principle in classical mechanics. I was learning from these dis-
cussions with Feynman that the integrated action of classical theory, in
a sense more precise than ever before appreciated, is—apart from a
universal factor, #=1.054X10"%" g cm®/sec—only another name for
the phase of the probability amplitude associated with the classical
history.

V1smng Einstein one day, I could not resist tel]mg him about Feyn—k
man’s new way to express quantum theory. ‘Feynman has found a
‘beautiful picture to understand the probability amplitude for a dynarn— :
ical system to go from one specified configuration at one time to an-
other specified configuration at a later time. He treats on a footing of
absolute equality every conceivable history that leads from the initial
state to the final one, no matter how crazy the motion in between. The
‘contnbunons of these histories differ not at all in amphtude, only in
phase And the phase is nothing but the classmal action integral, apart
from the Dirac factor, #. This prescnpnon reproduces all of standard
;quantum theory. How could one ever want a simpler way to see what
quantum theory is all about' Doesn’t this marvelous dlscovery make
you wﬂhng to accept quantum theory, E ofessor Einstein?”’ He replied
in a serious voice, “I still cannot believe that God plays dice. But
maybe,” he smiled, “1 have earned the mght to make my rmstakes =

Undeterred I pers1sted and still do, in regarding Feynman’s PhD
thesis as marking a moment when quantum theory for the first time
became simpler than classxcal theory I began my upcommg graduate ‘
course in classmal mechamcs with Feynman s idea that the micro-

scopic pomt part:lcle makes its way from A to B, not by a unique
history, but by pursumg every conceivable history with dernocraﬁcally ~
equal probability amphtude. Only out of Huygens's principle, only out
of the concept of constructive and destructxve interference between
these contrlbunons-—and this only in an apprommanon——could one
understand the existence of the classical history. Feynman sat there

and took the course notes, of Wthh 1 still have a muneographed copy

On many a puzzlmg point he helped us both to find new light by
k‘dxscussmns in class and out.

Any Career for the Kid from Far Rockaway?

While Richard was working on his thesis, his father, Melville Arthur
Feynman, sales manager for a medium-sized uniform company, made
a brief call on me in my office one day. How important he had been in
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Around a Mental Block

Princeton was celebrating the bicentennial of its founding with a grand
explosion of pomp that fall: parties, processions, and a series of formal
conferences that drew scholars and dignitaries from long distances. Dirac
had agreed to speak on elementary particles as part of a three-day session
on the future of nuclear science. Feynman was invited to introduce his
one-time hero and lead a discussion afterward.

He disliked Dirac’s paper, a restatement of the now-familiar difficulties
with quantum electrodynamics. It struck him as backward-looking in its
Hamiltonian energy-centered emphasis—a dead end. He made so many
nervous jokes that Niels Bohr, who was due to speak later in the day, stood
up and criticized him for his lack of seriousness. Feynman made a heartfelt
remark about the unsettled state of the theory. “We need an intuitive leap
at the mathematical formalism, such as we had in the Dirac electron
theory,” he said. “We need a stroke of genius.”

As the day wore on—Robert Wilson speaking about the high-energy
scattering of protons, E. O. Lawrence lecturing on his California accel-
erators—Feynman looked out the window and saw Dirac lolling on a patch
of grass and gazing at the sky. He had a question that he had wanted to
ask Dirac since before the war. He wandered out and sat down. A remark
in a 1933 paper of Dirac’s had given Feynman a crucial clue toward his
discovery of a quantum-mechanical version of the action in classical me-
chanics. “It is now easy to see what the quantum analogue of all this must
be,” Dirac had written, but neither he nor anyone else had pursued this
clue until Feynman discovered that the “analogue” was, in fact, exactly
proportional. There was a rigorous and potentially useful mathematical
bond. Now he asked Dirac whether the great man had known all along
that the two quantities were proportional.

“Are they?” Dirac said. Feynman said yes, they were. After a silence he
walked away.

Feynman’s reputation was traveling around the university circuit. Job
offers floated his way. They seemed perversely inappropriate and did nothing
to help his mood of frustration. Oppenheimer had invited him to California
for the spring semester; now he turned the invitation down. Cornell pro-
moted him to associate professor and raised his salary again. The chairman
of the University of Pennsylvania’s physics department needed a new chief
theorist. Here Bethe stepped in paternalistically: he had no intention of



Many years later Feynman and Dirac met one more time. They
exchanged a few awkward words---a conversation so remarkable
that a physicist within earshot immediately jotted down the
Pinteresque dialog he thought drifting his way:

I am Feynman.

1 am Dirac.

(Silence)

It must be wonderful to be the discoverer of that equation.
That was a long time ago. (Pause) What are you working on?
Mesons.

Are you trying to discover an equation for them?

It is very hard.

One must try.
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and just calculated the integral by means of the Taylor series expansion, thus
working out the Schrodinger equation

< not V(x)>¢(x, t)=ih%|p(x, f). (6.12)

2mdx?

Feynman turned to Jehle, who did not quite follow, and told him that Dirac
meant that they were proportional. Herbert Jehle had taken out a little
notebook and was rapidly copying it down from the blackboard, and said,
‘No, no, this is an important discovery. You Americans are always trying to
find out how something can be used. That’s a good way to discover things!’ #2

In the fall of 1946, Princeton University was celebrating its bicentennial, on
the occasion of which numerous festivities, including various series of lectures
were organized. In one of these sessions, devoted to science and organized by
Eugene Wigner, Feynman was invited to introduce Dirac and, after his
lecture, comment upon it. ‘It was like the ward-heeler of the 54th district (in
New York City) introducing the president of the United States. Dirac sent me
his paper, in his own handwriting, to read and I had to comment on it. After
Dirac’s lecture, I made my comments; I tried to simplify Dirac’s very technical
talk for the benefit of high school teachers and others who were not familiar
with the things that Dirac had talked about. But the other physicists, like Bohr
and Weisskopf, who were there did not give a damn about these other people,
and they criticized my attempt to ‘explain Dirac’ in my simplified way. After I
had made my criticism, people were standing around and discussing Dirac’s
paper, and I looked through the window and saw that Dirac was lying on the
lawn outside looking up in the sky. I had never really sat and talked to him
before then. But there was this question which I very much wanted to ask him,
so I walked up to him and said: ‘Professor Dirac, you wrote in a paper* in
which you taik about the analogy between exp (ieL) and the difference between
two points. He said, “yes.” I said, “Did you know that they are not just
analogous, they are equal or rather proportional.” He said, “Are they?” I said,
“Yes.” “Oh, that’s interesting,” was his comment. I wanted to know whether I
had discovered something or not, but he had never sat down to find out
whether they were equal or proportional. He just said, “No, I didn’t know, are
they? That’s interesting!” That was the first time I talked to him personally.’ !

In his paper Dirac was not able to complete this line of his investigations on
quantum mechanics because his point of view was based on the opinion that
the correspondence between the function K and the exponent of the classical
action function is only an approximate semiclassical relation. From the very
beginning of relativistic quantum mechanics it had been recognized that the
expression exp[(i/h)S] gave the semiclassical approximation to the exact
quantum wave function. Therefore Dirac was looking for a proper and exact
quantum analog of Hamilton’s principal function S, and he found relations
between the corresponding exact quantum Hamiltonian wave function and
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other quantum operators. Another step in this direction was taken by
Edmund Whittaker.?* Up to then this approach seems to have been quite
formal and did not lead to any essentially new results. Hence, the crucial
formal step to Feynman’s new method was to look at the limit when ¢ goes to
zero. In this limit one reaches an exact result for infinitesimal times.

Thus Feynman found the relation between the Lagrangian and quantum
mechanics, which was an important result of his dissertation, but still for
infinitesimal times. Several days later, when he was lying in bed, he worked out
the next fundamental step. Feynman described it as follows: . . . I'm lying in
bed—I can still see the bed. And I can’t sleep too well. And the bed was next to
the wall. I got my feet up against the wall, leaning my head off on one side of the
bed. You know that kind of stuff. And I'm picturing this thing and m putting
more and more lengthy times, I have to do this again and again, and so I've got
this exponential iL times again, times again, integrate it, integrate it. But the
product of all the exponentials is the exponential of the sum of the L’s, which is
the action. So I go, AAAAAHHHHH, and I jumped, “That’s the action!” That
was a moment of discovery!’!

Now Feynman was able, by using N times the formula (6.11), to obtain
exactly the right result for the function K(X, T; x, t). He had to construct the
expression

N-1 d N d L
J . Jexp((i/h) Y LGy =51~ 1), 0] (rm—r,-)) Do

(6.13)

where t=0,t,,¢t,,...,ty_, ty=T are certain instants of time, which divide
the time interval from the initial instant ¢ to the final instant T into a large
number of small intervals from ¢, to ¢, , of duration ¢ (i=1, 2, ..., N), such
that ¢;=t+ie. Then, in the limit when ¢ goes to zero, we reach the exact
quantum function K. In this limit, the expression in the exponent in equation
(6.13) resembles Riemann’s integral for the classical action functional:

A =Ilim <N_1 LGy =X/ W1 — 1), X1 ] (G4 g _ti)>' (6.14)

e—=>0 \i

Feynman’s conclusion was that equation (6.11) ‘is equivalent to Schréd-
inger’s differential equation for the wave function . Thus, given a classical
system described by a Lagrangian, which is a function of velocities and
coordinates only, a quanturn mechanical description of an analogous system
may be written down directly, without working out a Hamiltonian.’?*

This approach thus promised to solve the main problem, which Feynman
was trying to attack in his thesis: that is, the quantization of a classical system
without knowing its Hamiltonian. In addition, it turned out that he obtained a






The Princeton Years: "Surely You're Joking, Mr. Feynman!"

When | was an undergraduate at MIT | loved it. | thought it was a great
place, and | wanted to go to graduate school there too, of course. But when
| went to Professor Slater and told him of my intentions, he said, "We won't
let you in here."

| said, "What?"

Slater said, "Why do you think you should go to graduate school at
MIT?"

"Because MIT is the best school for science in the country."

"You think that?"

"Yeah."

"That's why you should go to some other school. You should find out how
the rest of the world is."

So | decided to go to Princeton. Now Princeton had a certain aspect of
elegance. It was an imitation of an English school, partly. So the guys in
the fraternity, who knew my rather rough, informal manners, started making
remarks like "Wait till they find out who they've got coming to Princeton!
Wait till they see the mistake they made!" So | decided to try to be nice
when | got to Princeton.

My father took me to Princeton in his car, and | got my room, and he
left. | hadn't been there an hour when | was met by a man: "I'm the Mahstah
of Residences heah, and | should like to tell you that the Dean is having a
Tea this aftanoon, and he should like to have all of you come. Perhaps you
would be so kind as to inform your roommate, Mr. Serette."

That was my introduction to the graduate "College" at Princeton, where
all the students lived. It was like an imitation Oxford or Cambridge --
complete with accents (the master of residences was a professor of "French
littrachaw"). There was a porter downstairs, everybody had nice rooms, and
we ate all our meals together, wearing academic gowns, in a great hall which
had stained-glass windows.

So the very afternoon | arrived in Princeton I'm going to the dean's
tea, and | didn't even know what a "tea" was, or why! | had no social
abilities whatsoever; | had no experience with this sort of thing.

So | come up to the door, and there's Dean Eisenhart, greeting the new
students: "Oh, you're Mr. Feynman," he says. "We're glad to have you." So
that helped a little, because he recognized me, somehow.

| go through the door, and there are some ladies, and some girls, too.

It's all very formal and I'm thinking about where to sit down and should |
sit next to this girl, or not, and how should | behave, when | hear a voice
behind me.

"Would you like cream or lemon in your tea, Mr. Feynman?" It's Mrs.
Eisenhart, pouring tea.

"Il have both, thank you," | say, still looking for where I'm going
to sit, when suddenly | hear "Heh-heh-heh-heh-heh. Surely you're joking, Mr.
Feynman."



Joking? Joking? What the hell did | just say? Then | realized what |
had done. So that was my first experience with this tea business.

Later on, after | had been at Princeton longer, | got to understand
this "Heh-heh-heh-heh-heh." In factit was at that firsttea, as | was
leaving, that | realized it meant "You're making a social error." Because
the next time | heard this same cackle, "Heh-heh-heh-heh-heh," from Mrs.
Eisenhart, somebody was kissing her hand as he left.

Another time, perhaps a year later, at another tea, | was talking to
Professor Wildt, an astronomer who had worked out some theory about the
clouds on Venus. They were supposed to be formaldehyde (it's wonderful to
know what we once worried about) and he had it all figured out, how the
formaldehyde was precipitating, and so on. It was extremely interesting. We
were talking about all this stuff, when a little lady came up and said, "Mr.
Feynman, Mrs. Eisenhart would like to see you."

"OK, just a minute..." and | kept talking to Wildt.

The little lady came back again and said, "Mr. Feynman, Mrs. Eisenhart
would like to see you."

"OK, OK!" and | go over to Mrs. Eisenhart, who's pouring tea.

"Would you like to have some coffee or tea, Mr. Feynman?"

"Mrs. So-and-so says you wanted to talk to me."

"Heh-heh-heh-heh-heh. Would you like to have coffee, or tea, Mr.
Feynman?"

"Tea," | said, "thank you."

A few moments later Mrs. Eisenhart's daughter and a schoolmate came
over, and we were introduced to each other. The whole idea of this
"heh-heh-heh" was: Mrs. Eisenhart didn't want to talk to me, she wanted me
over there getting tea when her daughter and friend came over, so they would
have someone to talk to. That's the way it worked. By that time | knew what
to do when | heard "Heh-heh-heh-heh-heh." | didn't say, "What do you mean,
'Heh-heh-heh-heh-heh'?"; | knew the "heh-heh-heh" meant "error," and I'd
better get it straightened out.

Every night we wore academic gowns to dinner. The first night it scared
the life out of me, because | didn't like formality. But I soon realized
that the gowns were a great advantage. Guys who were out playing tennis
could rush into their room, grab their academic gown, and put it on. They
didn't have to take time off to change their clothes or take a shower. So
underneath the gowns there were bare arms, T-shirts, everything.
Furthermore, there was a rule that you never cleaned the gown, so you could
tell a first-year man from a second-year man, from a third-year man, from a
pig! You never cleaned the gown and you never repaired it, so the first-year
men had very nice, relatively clean gowns, but by the time you got to the
third year or so, it was nothing but some kind of cardboard thing on your
shoulders with tatters hanging down from it.

So when | got to Princeton, | went to that tea on Sunday afternoon and
had dinner that evening in an academic gown at the "College." But on Monday,
the first thing | wanted to do was to see the cyclotron.
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crossed Queens and Brooklyn, then went to Staten Island
on the ferry—that was our romantic boat ride—and drove
to the city hall for the borough of Richmond to get married.

We went up the stairs, slowly, into the office. The guy
there was very nice. He did everything right away. He said,
“You don’t have any witnesses,” so he called the book-
keeper and an accountant from another room, and we were
married according to the laws of the state of New York.
Then we were very happy, and we smiled at each other,
holding hands.

The bookkeeper says to me, “You’re married now.
You should kiss the bride!”

So the bashful character kissed his bride lightly on the
cheek.

I gave everyone a tip and we thanked them very much.
We got back in the car, and drove to Deborah Hospital.

Every weekend I'd go down from Princeton to visit
Arlene. One time the bus was late, and I couldn’t get into
the hospital. There weren’t any hotels nearby, but I had my
old sheepskin coat on (so I was warm enough), and I looked
for an empty lot to sleep in. I was a little worried what it
might look like in the morning when people looked out of
their windows, so I found a place that was far enough away
from houses.

The next morning I woke up and discovered I'd been
sleeping in a garbage dump—a landfill! I felt foolish, and
laughed.

Arlene’s doctor was very nice, but he would get upset
when I brought in a war bond for $18 every month. He
could see we didn’t have much money, and kept insisting
we shouldn’t contribute to the hospital, but I did it anyway.

One time, at Princeton, I received a box of pencils in
the mail. They were dark green, and in gold letters were the
words “RICHARD DARLING, I LOVE YOU! PUTSY.” It
was Arlene (I called her Putsy).

Well, that was nice, and I love her, too, but—you know
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how you absentmindedly drop pencils around: you're
showing Professor Wigner a formula, or something, and
leave the pencil on his desk.

In those days we didn’t have extra stuff, so I didn’t
want to waste the pencils. I got a razor blade from the
bathroom and cut off the writing on one of them to see if
I could use them.

The next morning, I get a letter in the mail. It starts
out, “WHAT’S THE IDEA OF TRYING TO CUT THE
NAME OFF THE PENCILS?”

It continues: “Aren’t you proud of the fact that I love
you?” Then: “WHAT DO YOU CARE WHAT OTHER
PEOPLE THINK?”

Then came poetry: “If you're ashamed of me, dah dah,
then Pecans to you! Pecans to you!”” The next verse was the
same kind of stuff, with the last line, ‘“Almonds to you!
Almonds to you!”” Each one was “Nuts to you!” in a differ-
ent form.

So I had to use the pencils with the names on them.
What else could I do?

It wasn’t long before I had to go to Los Alamos. Robert
Oppenheimer, who was in charge of the project, arranged
for Arlene to stay in the nearest hospital, in Albuquerque,
about a hundred miles away. I had time off every weekend
to see her, so I would hitchhike down on a Saturday, see
Arlene in the afternoon, and stay overnight in a hotel there
in Albuquerque. Then on Sunday morning I would see
Arlene again, and hitchhike back to Los Alamos in the
afternoon.

During the week I would often get letters from her.
Some of them, like the one written on a jigsaw-puzzle blank
and then taken apart and sent in a sack, resulted in little
notes from the army censor, such as “‘Please tell your wife
we don’t have time to play games around here.” I didn’t tell
her anything. I liked her to play games—even though she
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a cigarette. It seemed to bring him such deep satisfac-
tion. “Let me know if you want to learn lattices,” he
said. “I'll promise you one thing . . . you won'’t have to
sleep under a table of spiders—or strings.”

With that we kept on toward the physics building.
Then I spotted Feynman in the distance. I had spent
the last couple of days on the lookout for Feynman,
hoping to manufacture a natural way to bump into
him and see if he would still talk to me. I told Con-
stantine I'd see him later. I walked over toward Feyn-
man.

When I got to him, Feynman was gazing at a rain-
bow. He had an intense look on his face, as if he were
concentrating. As if he had never seen one before. Or
maybe as if it might be his last.

I approached him cautiously.

“Professor Feynman. Hi,” I said.

“Look, a rainbow,” he said without looking at me. I
was relieved that I didn’t detect any residual annoy-
ance in his voice.

I joined him in staring at the rainbow. It appeared
pretty impressive, if you stopped to look at it. It
wasn’t something [ normally did—in those days.

“I wonder what the ancients thought of rainbows,”
I mused. There were many myths based on the stars,
but I thought rainbows must have seemed equally
mysterious.

“That’s a question for Murray,” he said. I eventually
tested Feynman’s theory on this and asked Murray.
Sure enough, I discovered that Murray was an ency-
clopedia when it came to native and ancient cultures.
He even collected artifacts. I learned from him that
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the Navajo people saw the rainbow as a sign of good
fortune, whereas some other Indians saw the rainbow
as a bridge between the living and the dead. I didn’t
quite get the names of those Indians because Murray
pronounced them in a manner that was so authentic
it was unintelligible.

“All I know,” Feynman continued, “is that according
to one legend angels put gold at its ends and only a
nude man can reach it. As if a nude man doesn’t have
better things to do,” he said with a sly smile.

“Do you know who first explained the true origin
of the rainbow?” I asked.

“It was Descartes,” he said. After a moment he
looked me in the eye.

“And what do you think was the salient feature of
the rainbow that inspired Descartes’ mathematical
analysis?” he asked.

“Well, the rainbow is actually a section of a cone
that appears as an arc of the colors of the spectrum

when drops of water are illuminated by sunlight be-
hind the observer.”

“And?”

“I suppose his inspiration was the realization that
the problem could be analyzed by considering a single
drop, and the geometry of the situation.”

“You're overlooking a key feature of the phenome-
non,” he said.

“Okay, I give up. What would you say inspired his
theory?”

“I would say his inspiration was that he thought
rainbows were beautiful.”

I looked at him sheepishly. He looked at me.

118



FEYNMAN’S RAINBOW

“How’s your work coming?” he asked.

I shrugged. “It’s not really coming.” I wished I was
like Constantine. It all came so easily to him.

“Let me ask you something. Think back to when
you were a kid. For you, that isn’t going too far back.
When you were a kid, did you love science? Was it
your passion?”

I nodded. “As long as I can remember.”

“Me, too,” he said. “Remember, it's supposed to be

fun.” And he walked on.
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Tuva and ask how I can visit? As much fun as it was to find
out more about Tuva, our real goal was to get to Kyzyl, and so
far we hadn’t done anything about that.

I contacted Mary Fleming Zirin, a woman I had bummed
rides off of when I was a student at UCLA, where she was
working on her Ph.D. in Russian. Mary remembered me, and
agreed to translate a short letter to “Teacher” at Shkola No. 2
in Kyzyl. For good measure I sent a similar letter to Shkola
No. 1, Kyzyl, Tuva, USSR.

In the spring, after the high school swimming season and
its coaching responsibilities were over, I went to the library at
the University of Southern California and searched through
immigration records of 1900-1950 to see if anyone had come
from Tuva to America. While there was no specific category
for Tuva, several Mongolians and “others” had come to the
United States in any given year.

Just in case one of those “others” was from Tuva and had
ended up in Los Angeles, I obtained a personalized license
plate and mounted it in a do-it-yourself frame with the words
“MoncoL MoTors” and “KyzyL” flanking “TOUVA” above
and below. At the very least, a stamp collector might recog-
nize the spelling and honk if he loved Tuvan postage stamps.

An article I found at the same library at USC claimed that
Kyzyl was the USSR’s “Atom City”—the center of Soviet
atomic weapons development—because Tuva is isolated and
surrounded by mountains rich in uranium. Another article,
in the Christian Science Monitor (September 15, 1966), said:

According to the official version, Tannu Tuva. .. asked for
admission into the Soviet Union. Its “petition was granted,”
just as four years earlier those of the three Baltic republics had
been granted.

In the case of Tannu Tuva the discovery of a large uranium
deposit, the first to be found in the Soviet Union on the
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threshold of the atomic age, seems to have caused the change
of status.

If Kyzyl is the USSR’s Los Alamos, I thought, then the
KGB will never believe that Richard Feynman wants to visit
the place because of how it is spelled!

In the summer of 1978, after competing in the First An-
nual Southern California Clown Diving Championships in
Los Angeles, I flew to Europe for a camping trip in the Bal-
kans. Meanwhile, Richard went to the doctor complaining of
abdominal pains. He soon underwent surgery. The doctor
removed a fourteen-pound mass of cancer the size of a foot-
ball that had crushed his kidney and spleen. Richard needed
the remainder of the summer to recover.

When I returned from Europe, there was no reply from my
fellow teachers at Shkola No. 2 or Shkola No. 1.

In the fall a new school year began, this time without the
coaching responsibilities. Another change: along with four
math classes, I was permitted to teach one class of world geog-
raphy. Of course my students eventually learned about a little
lost country called Tannu Tuva, but there were more impor-
tant things to discuss: the horrors of the Khmer Rouge regime
in Cambodia were becoming known to the outside world;
Iran was in turmoil, with the Shah’s regime threatened by the
exiled Muslim leader Ayatollah Khomeini; and Pope John
Paul I had died after thirty-three days in office and was suc-
ceeded by Karol Cardinal Wojtyla of Poland, the first non-
Italian pope in four hundred years. In the Middle East,
Moammar Kadafi was angry with Anwar Sadat for signing the
Camp David Accords with Menachem Begin. (I therefore had
to explain why the geography book, written in the 1960s, said
that Libya and Egypt were allies against Israel.)

Although there was no ballet to work on in 1978, Richard
and I continued drumming together. When we discussed
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WE were in shock. Tuva, isolated in the cen-
ter of Asia—that little lost land of enchanting
postage stamps—had transcended our wildest
dreams. The sounds on the record were stun-
ning: how could two notes be produced simulta-
neously by a single singer? At first the higher
“voice” sounded like a flute, several octaves
higher than the fundamental tone. Then came
even stranger styles of héémei, the most bizarre
of which was the “rattling” style, which
sounded like a long-winded frog.

It took several days for us to recover. Finally, 1
sent the mysterious sounds to all the Friends of
Tuva, including Mary Zirin, who suggested |
send a copy to Mario Casetta, the charismatic
deejay of ethnic music on KPFK, the local inde-
pendent radio station.

To Mr. Casetta, I simply wrote, “Guess what
this is, and where it comes from—Ralph Leigh-
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ton, 577-8882.” (The hint was to see which letters on the
telephone correspond to 8882.)

Casetta responded right away. “It sounds like something I
have on a record from Mongolia,” he said enthusiastically.
(Indeed, his record contained some héémei from western
Mongolia, where several thousand Tuvans live.)

I told him the mysterious sounds were from the land once
known as Tannu Tuva.

“Tannu Tuva—you mean the place with those beautiful
postage stamps!”’ (Mario, too, had collected Tuva’s distinctive
stamps as a boy.) “We’ll have to do a show—just give me
some time to rummage around the attic and find my collec-
tion.”

At the end of October Richard had some medical tests
done at UCLA. The results were “interesting” from Rich-
ard’s point of view; they were disastrous from everyone else’s
perspective: the cancer in his abdomen that supposedly had
been removed three years before had now spread in a compli-
cated pattern around his intestines.

Dr. Donald Morton of UCLA’s John Wayne Cancer
Clinic was called in to operate. I believe in cutting away an
inch of good tissue around every place I find cancer,” said the
surgeon. “I usually don’t stop until I can see the operating
table underneath.” :

“What are the odds in an operation like that?”’ Richard
asked.

“Well, I've had a dozen patients, and [ haven’t lost one
yet—but I still don’t know what my limitations are.”

Richard took radiation therapy to soften up the cancerous
tissue, and then underwent what was to be a ten-hour opera-
tion. As he was being sewn up, an artery close to his heart
burst. He required eighty pints of blood before it was over.
Coincidentally, there had been two other patients at UCLA
with similar needs that day, so the blood bank was running
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Figure 2: Two neighbouring paths.

However, this argument must be rethought for one exceptional path: that which extrem-
izes the action, i.e., the classical path, g.(t). For this path, S[q. + 1] = S[g.] + o(n?). Thus
the classical path and a very close neighbour will have actions which differ by much less than
two randomly-chosen but equally close paths (Figure 3). This means that for fixed closeness

paths interfere q

cl

constructively

paths interfere

destructively

t

Figure 3: Paths near the classical path interfere constructively.

of two paths (I leave it as an exercise to make this precise!) and for fixed , paths near the
classical path will on average interfere constructively (small phase difference) whereas for
random paths the interference will be on average destructive. '

Thus heuristically, we conclude that if the problem is classical (action > &), the most
important contribution to the PI comes from the region around the path which extremizes
the PI. In other words, the particle’s motion is governed by the principle that the action is
stationary. This, of course, is none other than the Principle of Least Action from which the
Euler-Lagrange equations of classical mechanics are derived.
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